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Abstract

Strong consistency and weak distributional convergence to highly non-Gaussian limits are
established for closed-form, two stage least squares (TSLS) estimators for a class of ARCH(p)
models. Conditions for these results include (relatively) mild moment existence criteria that
are supported empirically by many (high frequency) financial returns. These conditions are not
shared by competing closed-form estimators like OLS. Identification of these TSLS estimators
depends on asymmetry, either in the model’s rescaled errors or in the conditional variance
function. Monte Carlo studies reveal TSLS estimation to sizably outperform quasi maximum
likelihood estimation in (relatively) small samples. This outperformance is most pronounced
when returns are heavily skewed.
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1.1 Introduction

Since being introduced by Engle (1982), autoregressive conditional heteroskedastic (ARCH)

models have become the workhorse of conditional variance modeling in financial economics. The

original model has been extended and generalized in various ways (see; e.g., Bollerslev et al.,

1992). The most popular estimator for these types of models is quasi-maximum likelihood (QML).

The asymptotic properties of QML estimation of the linear ARCH model (Engle, 1982) are well

studied (see; e.g., Weiss, 1986, and more recently, Jensen and Rahbek, 2004, and Kristensen and

Rahbek, 2005). However, OLS estimation of the linear ARCH model is also possible, with the

accompanying advantage over QMLE being a closed-form solution. Weiss (1986) is (among) the

first to consider the asymptotic properties of OLS estimation of the linear ARCH model under

very restrictive moment existence criteria, while Francq and Zakoïan (2000) provide important

generalizations under comparable conditions. Since the linear ARCH model implies a set of Yule-

Walker equations for the squared returns (see; e.g., Mikosch and Straumann, 2002), the Whittle

estimator proposed by Giratis and Robinson (2001), the asymptotic properties for which they derive

under conditions comparable to Francq and Zakoïan (2000), also fits within the paradigm of closed-

form, linear ARCH estimators, because it is asymptotically equivalent to Yule-Walker estimation.

More recently, Kristensen and Linton (2006) provide asymptotic theory that relaxes the restrictive

conditions in Weiss (1986) and Francq and Zakoïan (2000) for establishing the distributional limit

(now highly non-Gaussian) and rate of convergence of the OLS estimator for the linear ARCH

model, while Mikosch and Straumann (2002) make an analogous contribution (with the same,

qualitative, form for the distributional limit as in Kristensen and Linton, 2006) to the asymptotic

properties of the Giratis and Robinson (2001) Whittle estimator. A necessary condition underlying

even these more recent works, however, is a well-defined fourth moment for the (raw) returns being

modeled. Unfortunately, and in many instances, this condition appears to be violated empirically

(see; e.g., Loretan and Phillips, 1994, Embrechts, Klüppelberg, and Mikosch, 1997, and Hill and

Renault, 2012).

In light of an ill-defined fourth moment for many of the financial returns to which ARCH-type

models are commonly applied, this paper proposes closed-form, two stage least squares (TSLS)

estimators for a class of ARCH(p) models that are comparable to Francq and Zakoïan (2000), but

involve different instruments. Strong consistency and weak distributional convergence to highly

non-Gaussian limits comparable (qualitatively) to those discovered in Mikosch and Straumann
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(2002), Kristensen and Linton (2006), and Vaynman and Beare (2014) are established for these

estimators, including under the condition where the fourth moment of the returns being modeled

is ill-defined. These closed-form, TSLS estimators apply to linear ARCH models and the threshold

ARCH model of Glosten, Jagannathan, and Runkle (1993). To my knowledge, no attention is

paid in the literature to establishing the asymptotic properties of closed-form estimators for the

threshold ARCH model.

Identification of the proposed TSLS estimators links to asymmetry, either in the distribution of

rescaled errors in the linear ARCH model or in the specification of the conditional variance function

in the threshold ARCH model. The large-sample properties of these estimators are derived by

extending results in Davis and Mikosch (1998) and Mikosch Stărică (2000) to include this necessary

asymmetry. Relative to estimators for ARCH(p) models that are asymptotically normal with a

convergence rate equal to the square root of the sample size, these TSLS estimators converge (quite

a bit) more slowly (especially, in empirically-relevant cases) and to a distributional limit that, while

stable, lacks a well-defined variance. Not surprising, then, Monte Carlo experiments reveal QML

estimation of the linear ARCH model to be (quite a bit) more effi cient than TSLS estimation,

in large samples. What is surprising, though, is that Monte Carlo experiments also reveal TSLS

estimation of the linear ARCH model to be (quite a bit) more effi cient than QML estimation, in

small samples, when the return distribution is (heavily) skewed. This latter finding evidences TSLS

estimators (above and beyond their relative simplicity) to possess improved finite-sample properties

over the QMLE alternative.

1.2 Background and Motivation

Consider the ARCH(1) model of

Yt = σtεt, σ2t = ω + αY 2t−1, εt ∼ i.i.d. D (0, 1) ,

where D is some zero-mean, unit-variance distribution. For this model, it is well known that

Y 2t = ω + αY 2t−1 +Wt, (1)

where {Wt} is a martingale difference sequence (MDS). In other words, the ARCH(1) model implies

an AR(1) model for the second-order return sequence. Given (1), it is apparent that OLS can be
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used to estimate the parameters of the model. Let γ ≡ E
(
Y 2t
)
, and Xt ≡ Y 2t − γ. From (1), given

suffi cient regulatory conditions, it also follows that

E
(
XtXt−m

)
= αmE

(
X2
t

)
, m ≥ 1, (2)

from which it is apparent that consistency of OLS requires E
(
Y 4t
)
< ∞. Based on results from

Kuersteiner (2002), Guo and Phillips (2001) consider improving the effi ciency of OLS by defining

as an instrument for Y 2t−1 an infinite, weighted sum of past Wt−1−i for i ≥ 0. Given (2), either OLS

applied to (1) or the instrumental variables (IV) estimator of Guo and Phillips (2001) is based upon

the second-order autocovariances of returns.3 In instances where D is heavy-tailed relative to the

normal, these estimators might prove favorable to the QMLE, since the latter is known to under-

represent the second-order autocovariances, in these cases (see; e.g., Jacquier, Polson, and Rossi,

1994 and Baillie and Chung, 1999). For given values of ω and α, however, there is also (certainly)

a limit to how heavy-tailed D can be, while still preserving a well-defined fourth moment for Yt.

Empirical evidence suggests exceedance of this limit for many financial return series.

Figure 1 plots Hill (1975) tail index estimates together with 95% confidence bands from Hill

(2010, Theorem 4) for three major currency returns (all measured relative the USD) sampled at

20-minute intervals. Recalling that a tail index κ > 0 for a regularly varying random variable is

a moment supremum; i.e., if Yt is regularly varying, then E |Yt|
p < ∞ if and only if p < κ (see;

e.g., Resnick, 1987, for an introduction to regular variation), empirical evidence does not (strongly)

support well-defined fourth moments for these currency returns. To the contrary, for substantial

sections of all three plots, even the upper confidence band is inside of 4. Moreover, currency returns

sampled at this (very) high frequency are known to display relatively less volatility persistence (and,

hence, relatively thinner tails) then currency returns measured at lower frequencies (like hourly or

daily) or equity returns measured at any frequency equal to or higher than daily (see; e.g., Anderson

and Bollerslev, 1997). Overall then, it is clear that standard
√
n asymptotics for OLS applied to (1)

are inconsistent with empirical findings, since those asymptotics require E
(
Y 8t
)
< ∞. Moreover,

it is (at least) questionable whether the OLS estimator is even consistent.

While not offering much to support well-defined fourth moments, Figure 1 does tend to support

well-defined third moments. Notice that the tail index estimates for all three returns stay close

3This same statement also applies to the TSLS estimator of Francq and Zakoïan (2000) and the Whittle estimator
of Giratis and Robinson (2001).
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to 3, and the upper confidence bands always cover (more than) 3. Loretan and Phillips (1994)

and Jondeau and Rockinger (2003) present comparable findings for daily FX and equity returns.

Cont and Kan (2011, Property 3) report κ ∈ (3, 6) for daily, credit default swap spread returns.

Bouchaud and Potters (2003, p. 102) state that "there is now good evidence that on short time

scales, and using long time series, the tail index for stocks is around 3 on several markets (U.S.,

Japan, Germany)."

For the three currency returns in Figure 1 (JPY, EUR, and CHF), skewness is −0.32, 0.20, and

0.42, respectively, each of which is highly significant against a null of normality given the, respective,

sample sizes. Table 1 illustrates additional cases where, not only is the evidenced skewness highly

significant, but also quite large in absolute terms. In general, skewness in (high frequency) financial

returns is prevalent enough to be considered a stylized fact, along with heavy tails. This stylized

fact can be used to identify a closed-form IV estimator for the ARCH(1) model. Consider using

Zt−1 =
(
Yt−1, . . . , Yt−h

)′
, h <∞,

as a vector of instruments for Y 2t−1 in (1). Analogous to (2), it follow that, given regulatory

conditions,

E
(
XtYt−m

)
= αmE

(
Y 3t
)
, (3)

which links a set of cross-order covariances to the third moment of Yt. If E
(
Y 3t
)
6= 0, as argued

above, then Zt−1 can be shown as a valid set of instruments for Y
2
t−1. In this case, Zt−1 can be used

in a TSLS estimator for (1), where consistency of this estimator requires E
(
Y 3t
)
<∞, a condition

that is now consistent with empirical findings.

Relying on skewness to define valid instruments is not new (see; e.g., Lewbel, 1997). The

benefit of doing so when estimating the ARCH(1) model is analogous to basing an estimator on

(2); specifically, a TSLS estimator based on Zt−1 chooses an α that best matches (3). By being fit

to a particular empirical feature of the data (in this instance, a set of cross-order covariances that

map to skewness in the underlying returns), this estimator might, also, perform well against the

QMLE, in instances where this feature strays from what is predicted under normality.

The (relatively) heavy-tailed asymptotics discussed in Kristensen and Linton (2006) that apply

to the OLS estimator for the ARCH(1) model, rely on the large-sample properties of the sample,

second-order autocovariances in (2) that are developed in Davis and Mikosch (1998). The (rela-
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tively) heavier-tailed asymptotics that apply to the proposed TSLS estimator extend these results

to the sample, cross-order covariances in (3). Doing so requires the return sequence {Yt} to be

regularly varying. While many ARCH-type processes can be shown to be regularly varying (see;

Basrak, Davis, and Mikosch, 2002), an added wrinkle in the present context is the requirement that

{Yt} be skewed. Adapting this requirement to a demonstration of regular variation for ARCH(1)

and threshold ARCH(1) processes is Lemma 3 in the Supplemental Appendix.

The same logic behind the TSLS estimator described above extends to TSLS estimation of a

threshold ARCH(1) model, with the interesting additional feature that E
(
Y 3t
)
6= 0 is no longer

necessary for identification. Generally, threshold ARCH models posit that tomorrow’s variance

depends on the sign of today’s return. This specification requires separate ARCH effects for pos-

itive and negative returns. Non-zero skewness in positive and negative returns occurs naturally.

As a consequence, TSLS estimation of a threshold ARCH(1) model bases identification on the

asymmetric specification of the conditional variance function.

2.1. The ARCH(1) Case

For the sequence {Yt}t∈Z, let zt be the associated σ-algebra where zt−1 ⊆ zt ⊆ · · · ⊆ z.

Consider the model

Yt = σtεt, σ2t = ω0 + α0Y
2
t−1, (4)

where ω0 denotes the true value, ω any one of a set of possible values, ω̂ an estimate, and parallel

definitions hold for all other parameter values. From (4),

σ2t = ω0 + σ2t−1At, At = α0ε
2
t−1, (5)

which characterizes σ2t as a stochastic recurrence equation (SRE). Most ARCH-type processes can

be characterized as SREs and, as such, shown to be regularly varying (see Basrak, Davis, and

Mikosch, 2002). Specifically, for Yt =
(
Yt, . . . , Yt+h

)
, where, for short hand,

Y = Y0 =
(
Y0, . . . , Yh

)
,

Y is regularly varying in Rh+1 with tail index κ0, if there exists a sequence of constants {an} such

that

nP (|Y| > an) −→ 1, n→∞,
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where |Y| = max
m=0,...,h

|Ym|;

an = n1/κ0L (n) ,

and L (·) is slowly-varying at ∞.

That Y is regularly varying is demonstrated in Davis and Mikosch (1998, Lemma A.1) and

Mikosch and Stărică (2000, Theorem 2.3), but only in instances where D is symmetric (see Remark

R2 in the Supplemental Appendix). Regular variation ofY can follow minus any need for symmetry

in D (see Lemma 3 in the Supplemental Appendix) and applies to both the ARCH(1) case in (4)

as well as the threshold ARCH(1) case of (21), making the result compatible with Assumption A3

below and complementary to Basrak, Davis and Mikosch (2002, Corollary 3.5 (B)).

ASSUMPTION A1: (i) The sequence {εt}t∈Z is i.i.d. D (0, 1) for some distribution D with

unbounded support. (ii) E |εt|
j = cj <∞ for j > 3.

Under A1(i), (4) is the strong ARCH(1) model of Drost and Nijman (1993). Specifying the

rescaled errors as i.i.d. is necessary for establishing the distributional limits and rates of convergence

of the proposed closed-form estimators. Consistency of these estimators, however, continues to

follow under the semi-strong definition of ARCH (see Prono, 2014), where (weak) dependence in

the higher moments of the model’s rescaled errors is allowed.

Under A1(ii), {εt} is relatively light-tailed, meaning that heavy-tailed features of {Yt} stem

from {σt}. It is this distinction between the tail properties of {σt} and {εt} that enables {Yt} to

be established as regularly varying. Given A1(ii), up to the jth moment of the model’s rescaled

errors is well-defined. Kristensen and Rahbek (2005) assume j = 4, while Hill and Renault (2012)

present empirical findings that support j = 4.

ASSUMPTION A2: For a d× 1 vector α of ARCH coeffi cients,

Θ =
{
θ = (ω,α) ∈ Rd+1 | ω ≥ ω, αi ≥ 0

}
for some ω > 0 and, at least, one αi > 0.

A2 heralds from Kristensen and Rahbek (2005). For the ARCH(1) case, d = 1. Notice that Θ

is noncompact and ω is bounded below by a nonzero value.

ASSUMPTION A3: E
(
ε3t
)

= c∗3 6= 0.
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Under A3, D in A1(i) is an asymmetric distribution. The direction of skewness is unconstrained.

Skewness in (high frequency) returns is considered a stylized fact. This fact is exogenous to the

model under consideration, yet (as will be shown) can be harnessed to identify the model. Examples

where an asymmetricD is used to account for skewness in returns include Hansen (1994) and Harvey

and Siddique (1999).

ASSUMPTION A4: E
(
A3/2

)
< 1.

A4 is suffi cient for {Yt} to have a strictly stationary solution (see Mikosch, 1999, Corollary

1.4.38, and Remark 1.4.39). Throughout this and the remaining sections, assume that the (strictly)

stationary solution is the one being observed.

From (4) follows that

Y 2t = σ2t +Wt, Wt = σ2t
(
ε2t − 1

)
, (6)

where {Wt} is a MDS. Let Xt ≡ Y 2t − γ0, where γ0 ≡ E
(
Y 2t
)

=
ω0
1−α0

. Then

Xt = α0Xt−1 +Wt, (7)

in which case, the centered second-order sequence {Xt} follows an AR(1) process. Given that

E
(
Y 3t
)

= E
(
σ3t
)
c∗3,

A4 is also suffi cient for
{
Y 3t
}
to have a well-defined and stationary mean (see Lemma 1 in the

Supplemental Appendix). As a consequence, multiplying both sides of (7) by Yt−m for m ≥ 1 and

taking expectations produces

E
(
XtYt−m

)
= αm0 E

(
Y 3t
)
. (8)

Consider

Zt−1 =
(
Yt−1, . . . , Yt−h

)′ (9)

for h <∞. Then E
(
WtZt−1

)
= 0 by iterative expectations and, owing to (8),

E
(
Xt−1Zt−1

)
= E

(
Y 3t
)
×
(

1, α0, . . . , αh−10

)′
, (10)
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making Zt−1 a valid set of instruments for Xt−1. For the observed sequence {Yt}
n
t=1, consider then

α̂IV =

(∑
t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂tZt−1

)
(∑

t
X̂t−1Zt−1

)′
Λ̂

(∑
t
X̂t−1Zt−1

) , (11)

ω̂IV = γ̂
(

1− α̂IV
)
, (12)

where

X̂t = Y 2t − γ̂, γ̂ = n−1
∑
t
Y 2t ,

noting that both α̂IV and ω̂IV are variance-targeted estimators (VTEs).4

ASSUMPTION A5: Λ̂
a.s.−→ Λ0, a positive definite matrix .

Suppose Λ̂ =

(
n−1

∑
t

Zt−1Z
′
t−1

)−1
. In this case, α̂IV is a TSLS estimator. Alternatively,

if Λ̂ =

(
n−1

∑
t

(
Xt − α̃Xt−1

)2
Zt−1Z

′
t−1

)−1
, α̂IV is a two-step GMM estimator, where α̃ is a

preliminary estimate. While the two-step GMM version of (11) is certainly preferable on effi ciency

grounds, it requires E
(
A3
)
< 1 in order for A5 to hold, which is inconsistent with Figure 1. In the

TSLS case, on the other hand, since {Yt} is strongly mixing by Carrasco and Chen (2002, Corollary

6),

Λ̂ =

(
n−1

∑
t

Zt−1Z
′
t−1

)−1
a.s.−→ γ−10 Ih,

where Ih is the (h× h) identity matrix, by the Ergodic Theorem, given only the milder condition

A4.

α̂IV is related to the IV estimator proposed by Guo and Phillips (2001). There are, however,

two key differences. The first difference involves instrument choice. In Guo and Phillips, the

instruments are second-order lags as opposed to first-order lags, as is the case here. Second, the

instruments in (11) are not effi cient in the sense of Kuersteiner (2002). Making them so, however,

requires E
(
A3
)
< 1 and, hence, is limited to the thin-tailed case.

4VTE for ARCH-type models is first introduced by Engle and Mezrich (1996) in a QMLE context, while the
asymptotic theory for this estimator is studied by Francq, Horváth, and Zakoïan (2011) and Vaynman and Beare
(2014).
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THEOREM 1. Consider the estimators in (11) and (12) for the model in (7). Let

A0 = E
(
Xt−1Zt−1

)′
Λ0; B0 = E

(
Xt−1Zt−1

)′
Λ0E

(
Xt−1Zt−1

)
.

Let Assumptions A1—A5 hold. Then

α̂IV
a.s.−→ α0, ω̂IV

a.s.−→ ω0.

In addition,

na−3n

(
α̂IV − α0

)
d−→ B−10 A0Vh (13)

if κ0 ∈ (3, 6), where the vector Vh =
(
V1, . . . , Vh

)′
is jointly (κ0/3)−stable, with

components (Vm)m=1,...,h defined in Lemma 5 of the Supplemental Appendix, and

na−3n

(
ω̂IV − ω0

)
= −γ0na−3n

(
α̂IV − α0

)
+ op (1) . (14)

Alternatively, if E
(
A3
)
< 1 so that E

(
Y 6t
)
<∞ and κ0 ∈ (6, ∞), then

√
n
(
α̂IV − α0

)
d−→ N

(
0, Σα0

)
(15)

and
√
n
(
ω̂IV − ω0

)
d−→ N

(
0, Σω0

)
, (16)

where

Σα0
= B−20 A0E

(
W 2
t Zt−1Z

′
t−1

)
A
′
0, Σγ0

= E
(
X2
t

)
+ 2

∞∑
s=1

E
(
XtXt−s

)
,

and

Σω0
= Σγ0

+ γ20Σα0
− 2γ0B

−1
0 A0

(
2
∞∑
s=1

E
(
WtZt−1Y

2
t−s
))

. (17)

Proof. Proofs of all Theorems are contained in the Appendix. Statements and proofs of all Lemmas

that support the Theorems are contained in the Supplemental Appendix.

The IV estimator in (11) depends on the (sample) cross-order covariances from (8), which

are all nonzero owing to A3. The (weak) distributional limits of these cross-order covariances are

established using a CLT from Davis and Mikosch (1998, Theorem 2.8) together with the continuous
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mapping theorem (see Lemma 4 and Remark R3 in the Supplemental Appendix for the CLT and

Lemma 5, also in the Supplemental Appendix, for the distributional limits). The method of proof

extends results from Davis and Mikosch (1998) and Mikosch and Stărică (2000) to cross-order

covariances (see Lemmas 3—5 in the Supplemental Appendix) and relies on a first-order Taylor

Expansion of σ3t around ω; in which case, the limiting results are most appropriate for a small ω0.
5

The (weak) distributional limit in (13) is simply a linear combination of the distributional limits of

the cross-order covariances, which are jointly stable by Samorodnitsky and Taqqu (1994, Theorem

2.1.5(c)). This distributional limit consists of functionals of {Yt}. Within this limit, the individual

components of Vh are dependent (see Lemma 5 in the Supplemental Appendix).

A suffi cient condition for (13) is j = 6 in A1. Such a condition is a close analog to one used in

both Davis and Mikosch (1998) and Mikosch and Stărică (2000).6 Given a result from von Bahr

and Esseen (1965, Theorem 2) that is also used in Vaynman and Beare (2014), this condition is

relaxed in Theorem 1 to allow, instead, that j ∈ (3, 6). This milder condition is better aligned with

more-recent theory and empirical findings for many (high frequency) financial returns. This same

milder condition also applies to the threshold ARCH(1) and ARCH(p) cases discussed in Sections

2.2 and 2.3, respectively.

In (13), the limiting distribution is not impacted by γ̂. The rate of convergence is n
κ0−3
κ0 , which

is (quite a bit) slower than the usual
√
n case, especially for values of κ0 near the lower-bound

of its required support, which, as evidenced in Figure 1, are the most empirically relevant. The

borderline case of κ0 = 6 is omitted for the same reasons cited in Vaynman and Beare (2014, Section

3.2).

Mentioned in the Introduction and evidenced in Theorem 1, a principal advantage of (11) over

the OLS alternative is that both consistency and (weak) distributional convergence follow when

E
(
Y 4t
)

=∞. This result renders (11) compatible with empirical findings for many financial return

series. The cost of this result, however, is a limitation on the set of permissible distributions for

the model’s rescaled errors. Given this limitation, the asymptotic properties of the OLS estimator

applied to (7) are derived in the Supplemental Appendix.

The distributional limit in (13) is mostly qualitative in nature, owing to a (very) awkward

characteristic function that does not readily admit the construction of confidence intervals. Consider

5Given the values of ω̂ typically encountered in practice, the described limitation does not appear to be particularly
binding.

6 In each of these two cases, second-order autocovariances are considered; i.e., E (XtXt−m) for m ≥ 1, in which
case, the analogous condition is j = 8.
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then

τ̂2n = n−1
∑
t
Y 6t . (18)

Following the same method of proof for Davis and Hsing (1995, Theorem 3.1(i)),

na−6n τ̂2n
d−→ S0, (19)

where S0 is (κ0/6)−stable. Given thatVh and S0 are each characterized by stable laws,
(

V
′
h, S0

)
will be multivariate stable (see; e.g., Hall and Yao, 2003, and Vaynman and Beare, 2014, Theorem

4), in which case,
√
n

(
α̂IV − α0

τ̂n

)
d−→ B−10 A0Vh

S
1/2
0

, (20)

by the continuous mapping theorem.

(20) enjoys the advantage relative to (13) of removing the unknown scaling factor a−3n . Given

(20), confidence intervals for α̂IV can be constructed by applying the subsampling method in

Vaynman and Beare (2014, Section 4.1)to the left-hand-side of (20).7 Confidence intervals can,

alternatively, be obtained by bootstrapping this same normalized quantity as demonstrated in Hall

and Yao (2003, Corollary to Theorem 3.2). These bootstrap methods display better finite sample

performance than the subsampling method while maintaining tractability, owing to the fact that

α̂IV is closed form.

In the thin-tailed case where E
(
A3
)
< 1, the distributional limit of α̂IV becomes Gaussian, with

the usual rate of convergence. (20) is helpful in illustrating this case; since, when E
(
Y 6t
)
< ∞,

τ̂n has a degenerate limit, and the variance of the joint distribution behind Vh is well defined.

Interestingly, in this case, the asymptotic variance of γ̂ does not impact Σα0
. Moreover, owing

to (10), as c∗3 → 0 (i.e., as D becomes increasingly symmetric), Σα0
increases without bound. In

the limit where c∗3 = 0, Σα0
is ill-defined, rendering α̂IV unidentified. Finally, as is well known,

Λ0 = E
(
W 2
t Zt−1Z

′
t−1

)−1
produces the minimum-variance estimator. In the thin-tailed case, then,

α̂IV should be a two-step GMM estimator.

7This method displays (very) poor finite sample performance for n ≤ 2, 500 (see Vaynman and Beare, 2004,
Section 4.2). However, given the sample sizes in Table 1 and the statement from these same authors that results for
their method are improved at sample sizes of n = 50, 000, subsampling might prove to be, generally, more feasible
(empirically) for applications involving intraday returns.
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2.2. The Threshold ARCH(1) Case

Consider next the model of

Yt = σtεt, σ2t = ω0 + α1,0Y
2
t−1 × I{Yt−1≥0} + α2,0Y

2
t−1 × I{Yt−1<0}, (21)

which is the threshold ARCH(1) model of Glosten, Jagannathan, and Runkle (1993); henceforth,

the GJR ARCH(1) model. For this model, the following SRE applies

σ2t = ω0 + σ2t−1At, At = α0,t−1ε
2
t−1, α0,t−1 = α1,0 × I{Yt−1≥0} + α2,0 × I{Yt−1<0}.

As a consequence, {Yt} continues to have a strictly stationary solution given A4. Next, since (6)

continues to hold,

E
(
Y 2t
)

=
ω0 + α1,0Cov

(
Y 2t , I{Yt≥0}

)
+ α2,0Cov

(
Y 2t , I{Yt<0}

)
1−

(
α1,0 × P (Yt ≥ 0) + α2,0 × P (Yt < 0)

) , (22)

in which case,

Xt = α1,0X1,t−1 + α2,0X2,t−1 +Wt (23)

= X
′
t−1α0 +Wt,

where

X1,t−1 = Y 2t−1× I{Yt−1≥0} −E
(
Y 2t × I{Yt≥0}

)
, X2,t−1 = Y 2t−1× I{Yt−1<0} −E

(
Y 2t × I{Yt<0}

)
.

Motivated by the results in Section 2.1, consider as (potential) instruments for Xt−1

Zt−1 =
((
Z1,t−1, Z2,t−1

)
, . . . ,

(
Z1,t−h, Z2,t−h

))′
, h <∞, (24)

where

Z1,t−m = Yt−m×I{Yt−m≥0}−E
(
Yt × I{Yt≥0}

)
, Z2,t−m = Yt−m×I{Yt−m<0}−E

(
Yt × I{Yt<0}

)
for m ≥ 1.

13



ASSUMPTION A6: E
(
Zt−1X

′
t−1

)
has full column rank.

A6 applies the usual rank condition for identifying IV estimators. A suffi cient condition for A6

is

E
(
Z1,t−1X1,t−1

)
× E

(
Z2,t−1X2,t−1

)
− E

(
Z1,t−1X2,t−1

)
× E

(
Z2,t−1X1,t−1

)
6= 0, (25)

which establishes
(
Z1,t−1, Z2,t−1

)′ as valid instruments for (X1,t−1, X2,t−1)′. Let
E
(
εjt × I{εt≥0}

)
= c+j , E

(
εjt × I{εt<0}

)
= c−j , j = 1, 2, 3.

Given (21) then,

c+1 + c−1 = 0, c+2 + c−2 = 1, c+3 + c−3 = c∗3, (26)

where c∗3 is defined in A3. Using (26), (25) can be restated as

E
(
σ3t
)
×
[
E
(
σ3t
)
c+3 c
−
3 − E (σt)E

(
σ2t
)
×
(
c−1 c
−
2 c
+
3 + c+1 c

+
2 c
−
3

)]
6= 0. (27)

Suppose that c∗3 = 0, which is to say that the distribution of {εt} is symmetric. In this case, again

using the constraints in (26), (27) is satisfied if

E
(
Y 3t × I{Yt≥0}

)
− E

(
Y 2t
)
× E

(
Yt × I{Yt≥0}

)
6= 0

and

E
(
Y 3t × I{Yt<0}

)
− E

(
Y 2t
)
× E

(
Yt × I{Yt<0}

)
6= 0,

depending on whether (27) is solved only in terms of c+j or c
−
j , respectively. Notice that A3 is not

necessary for satisfying even (25). So long as α1,0 6= α2,0 (i.e., there exists a threshold effect in

the conditional variance), Zt−1 as defined in (24) can serve as a valid set of instruments for Xt−1

regardless of whether the rescaled errors from the GJR ARCH(1) model are skewed. In this case, it

is the conditional variance function itself that supplies the necessary asymmetry for identification.

In the event that α1,0 = α2,0, however, (23) reduces to (7); in which case, A3 becomes necessary

for establishing validity of the instruments in (9) because, in this case, asymmetry can only come

from the model’s rescaled errors.8

8Notice that each instrument in (9) is a MDS. This characterization does not carry-over onto the instruments in
(24). These latter instruments, while unconditionally mean-zero, are not conditionally mean-zero.

14



Owing to the identification condition in A6, the GJR ARCH(1) analog to (11) based upon

feasible versions of Xt−1 and Zt−1is

α̂IV = F̂

(
n−1

∑
t
X̂tẐt−1

)
, (28)

where

F̂ =

[(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)
Λ̂

(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)′]−1(
n−1

∑
t

X̂t−1Ẑ
′
t−1

)
Λ̂ (29)

is a 2× 2h matrix, and

Ê
(
Y j
t × I{Yt≥0}

)
= n−1

∑
t
Y j
t × I{Yt≥0}, Ê

(
Y j
t × I{Yt<0}

)
= n−1

∑
t
Y j
t × I{Yt<0}, j = 1, 2.

When Λ̂ =

(
n−1

∑
t

Ẑt−1Ẑ
′
t−1

)−1
, (28) is a TSLS estimator for (21), with the same discussion

regarding selection of Λ̂ in Section 2.1 remaining applicable.

THEOREM 2. Consider the estimator in (28) for the model in (23) when α1,0 6= α2,0, and let

F0 =

[
E
(
Xt−1Z

′

t−1

)
Λ0E

(
Xt−1Z

′
t−1

)′]−1
E
(
Xt−1Z

′
t−1

)
Λ0.

In addition, let Assumptions A1—A2 and A4—A6 hold. Then,

α̂IV
a.s.−→ α0.

In addition,

na−3n

(
α̂IV −α0

)
d−→ F0W

(+,−)
h (30)

if κ0 ∈ (3, 6), where the vector

W
(+,−)
h =

(
W+
1 , W−1 , . . . , W+

h , W−h

)′
is jointly (κ0/3)−stable, with components

(
W+
m W−m

)
m=1,...,h

defined in Lemma 6 of the

Supplemental Appendix. Alternatively, if E
(
A3
)
< 1 so that E

(
Y 6t
)
<∞ and κ0 ∈ (6, ∞),

then
√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
. (31)
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The main result in (30) follows from the (weak) distributional convergence of n−1
∑
t
XtZt−1 (see

Lemma 6 in the Supplemental Appendix), which involves cross-order sums constructed from positive

and negative realizations of {Yt}, respectively. This result requires α1,0 > 0 and α2,0 > 0 (see

Remark R2 in the Supplemental Appendix). The distributional limit of α̂IV is a linear combination

of the limits to sample cross-order covariances taken from the right-hand-side and left-hand-side

of the distribution of Yt. Individual components of W
(+,−)
h are dependent (see Lemma 6 in the

Supplemental Appendix). In addition, W+
1 and W−1 jointly depend on V1 from Theorem 1, which

connects the limiting result in (30) to that in (13). Normalizing the left-hand-side of (30) by τ̂n

as it is defined in (18) enables construction of either subsample or bootstrap confidence intervals

for α̂IV as described following the statement of Theorem 1 in Section 2.1. In the case where

E
(
A3
)
< 1, Λ0 = E

(
W 2
t Zt−1Z

′
t−1

)
produces the minimum variance estimator so that α̂IV should

be a two-step GMM estimator.

Note that Theorem 2 does not depend on A3. As a consequence, (28) seems to be the preferable

choice for estimating (23) over OLS in the (empirically relevant) case where E
(
Y 4t
)

= ∞; since,

like Theorem 1, consistency and (weak) distributional convergence are supported under this case

while, unlike Theorem 1, the set of permissible distributions for the model’s rescaled errors includes

symmetric candidates. Nevertheless, the asymptotic properties of the OLS estimator for (23) are

also developed in the Supplemental Appendix.

Finally, let

Γ0 =
(
Cov

(
Y 2t , I{Yt≥0}

)
, Cov

(
Y 2t , I{Yt<0}

) )′
, P0 =

(
P (Yt ≥ 0) , P (Yt < 0)

)′
.

Then, given (22),

ω̂ = γ̂
(

1− P̂′α̂
)
− Γ̂′α̂

so that

ω̂ − ω0 = (γ̂ − γ0)− (γ0P0 + Γ0)
′ (α̂−α0) ,

in which case, a comparable version of (14) then follows.
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2.3. The ARCH(p) Case

Consider finally the model of

Yt = σtεt, σ2t = ω0 +
p∑
i=1
αi,0Y

2
t−i, 1 ≤ p <∞. (32)

ASSUMPTION A7: c3
p∑
i=1

p∑
j=1

αi,0α
1/2
j,0 < 1.

A7 is the generalization of A4 to ARCH(p) processes and, as such, is suffi cient for E
(
Y 3t
)
<∞

(see Lemma 8 in the Supplemental Appendix).

ASSUMPTION A8: Define ρp (εt) as the largest root of 1−
p∑
i=1
λiαi,0ε

2
t .

E
(
ρp (εt)

2s
)
< 1

for s = 2, 3, 4.

Suppose j = 2s in A1. Then A8 establishes E
(
Y 2st

)
< ∞ (see Carrasco and Chen, 2002,

Proposition 13).

From Basrak, Davis, and Mikosch (2002), (32) can be recast in terms of the following SRE:

Ỹt = AtỸt−1 + Bt, (33)

where

Ỹt =
(
σ2t , Y 2t−1, Y 2t−2, . . . , Y 2t−p+1

)
,

At =



α1,0ε
2
t−1 α2,0 α2,0 · · · αp,0

ε2t−1 0 0 . . . 0

0 1 0 . . . 0
...

. . .
...

0 0 . . . 1 0


Bt =

(
ω0, 0, 0, . . . , 0

)′
.

Given A7, (33), Basrak, Davis, and Mikosch (2002, Theorem 3.1(A)), and Mikosch (1999, Remark

1.4.39), {Yt} has a strictly stationary solution. Given Basrak, Davis, and Mikosch (2002, Theorem
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3.1 (B)),
{

Ỹt

}
is RV(κ0), and given Basrak, Davis, and Mikosch (2002, Corollary 3.5 (B)), {Yt} is

RV(κ0), where κ0 = 2κ0.

Given the definition of Xt used in Sections 2.1 and 2.2, let

Xt−1 =
(
Xt−1, . . . , Xt−p

)′
. (34)

Then the generalization of (7) is

Xt = X
′
t−1α0 +Wt, (35)

where α0 =
(
α1,0, . . . , αp,0

)′
. Consider

Zt−1 =
(
Yt−1, . . . , Yt−h

)′
, p ≤ h <∞, (36)

as a vector of instruments for Xt−1. Given A3, Zt−1 identifies α0 in (35) (see Lemma 9 in the

Supplemental Appendix). Consider then the estimator

α̂IV = F̂

(
n−1

∑
t
X̂tZt−1

)
, (37)

where F̂ is defined as in (29), but with Zt−1 in (36) everywhere replacing Ẑt−1, and X̂t−1 defined

as the finite sample version of (34).

THEOREM 3. Consider the estimator in (37) for the model in (35). Let Assumptions A1—A5

and A7 hold. Then,

α̂IV
a.s.−→ α0.

In addition,

na−3n

(
α̂IV −α0

)
d−→ F0Vp,h (38)

if κ0 ∈ (3, 6), where the vector Vp,h =
(
Vp,1, . . . , Vp,h

)′
is jointly (κ0/3)−stable, with

components
(
Vp,m

)
m=1,...,h

defined in Lemma 12 of the Supplemental Appendix. Alternatively,

if Assumption A8 with s = 3 holds so that E
(
Y 6t
)
<∞ and κ0 ∈ (6, ∞), then (31) results,

with F0 being the population limit of F̂ in (37) and Zt−1 being defined in (36).

Under Theorem 3, (38) reduces to (13) when p = 1. As a consequence, A3 is necessary for
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establishing the large sample properties of (37) (see Lemma 9 in the Supplemental Appendix).

That is, in the absence of skewness, (37) neither is identified nor does it possess a stable limiting

distribution. The CLT underlying (38) is Basrak, Davis, and Mikosch (2002, Theorem 2.10),

which generalizes Lemma 4 in the Supplemental Appendix.9 Application of Basrak et al. (2002,

Theorem 2.10) requires
{(

Yt, σt

)}
to be regularly varying, which, in turn, is established by

Basrak et. al (2002, Corollary 3.5(B)).10 Given (18), normalization of the left-hand-side of (38)

enables the application of subsampling (see Vaynman and Beare, 2014, Theorem 6) or bootstrapping

(see Hall and Yao, 2003, Corollary to Theorem 3.1) techniques to
√
n
(
α̂IV −α0

τ̂n

)
for the purpose

of determining confidence intervals for α̂IV . Lastly, A8 with s = 3 is the ARCH(p) analog to

E
(
A3
)
< 1 that is used to establish the ARCH(1) and GJR ARCH(1) estimators as asymptotically

normal. A8 with s = 2 and s = 4 is used in the Supplemental Appendix to establish the large

sample properties of the OLS estimator applied to (35).

The distributional limit in (38) generally differs from the special case presented in (13) in

that the former is derived, in part, from (normalized) sums of {σt} (see Lemmas 10 and 12 in

the Supplemental Appendix), while the latter is derived only from (normalized) sums of {Yt} (

see Lemma 5, also in the Supplemental Appendix). In other words, the distributional limit in

(13) depends only on functionals of the observable sequence {Yt}, while the distributional limit

in (38) depends both on functionals of {Yt} and on functionals of the latent sequence {σt}. The

complexities that arise in the cross-order covariances generated by (32) when p > 1 (see; e.g., Guo

and Phillips, 2001, Lemma 1) necessitate this differential approach. The limit in (38), nonetheless,

reduces to the limit in (13) when p = 1 and establishes both a stable limit and rate of convergence

for (38), generally, under a method of proof that is comparable to Basrak, Davis, and Mikosch

(2002, Theorem 3.6).

The differential approach in establishing (38) versus (13) is an example of the diminished ability

to easily verify the large sample properties of general ARCH(p) versus ARCH(1) processes and (by

extension) estimators that apply to each. That A4 is suffi cient for establishing {Yt} as strictly

stationary in the ARCH(1) case, while a strictly negative Lyapunov exponent for the sequence

{At} in (33) is necessary for establishing the same result in the ARCH(p) case (see; e.g., Basrak,

Davis, and Mikosch, 2002, Theorem 2.1) is another example.

9Lemma 4 establishes the CLT underlying Theorems 1 and 2, respectively.
10 In contrast, Lemma 3 in the Supplemental Appendix establishes regular variation of {Yt} under Theorems 1 and

2, respectively.
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Lastly, since

ω̂ − ω0 = (γ̂ − γ0)− γ0ι′ (α̂−α0) ,

and given Theorem 3, the large sample properties of ω̂ can be established analogously to results

presented in Theorem 1.

3. Monte Carlo

Consider the ARCH(1) model from Section 2.1, where {εt} is drawn from the skewed student’s

t density of Hansen (1994). This density has two parameters, λ and η, with the former governing

skewness, the latter governing the tails, and up to the ηth moment being well defined. Table

1 summarizes the various (λ, η) pairs considered in the simulations. Also summarized for each

pair is the skewness and (tail) index of the resulting sequence {Yt}. To provide some context

for the skewness measures reported in Table 1, skewness estimates for various intra-day Japanese

Yen returns (measured relative to the USD) as well as S&P 500 Index and DJIA returns are

summarized in Table 2. Apparent from Table 2, high frequency financial returns tend to display

significant skewness that can be quite large in magnitude (see also Cont and Kan, 2011, Table

3, for comparably-sized skewness estimates for daily, 5-year credit default swap spread returns).

As a consequence, even the highest level of skewness considered in the simulations has empirical

support. In light of the discussion of A1(ii) in Section 2.1, the relatively thin-tailed case of η = 8.1

is considered only to validate the large-sample properties of α̂IV predicted by Theorem 1 and α̂OLS

predicted by Proposition 1 in the Supplemental Appendix. Given Kristensen and Rahbek (2005)

and the empirical findings of Hill and Renault (2012), the case where η = 4.1 is considered more

realistic. Lastly, for all (λ, η) pairs considered, A4 is satisfied so that E
(
Y 3t
)
<∞.

Across all simulations, ω0 = 0.005 and α0 = 0.25.11 As noted in Table 1 by the tail indices,

when η = 8.1, E
(
Y 4t
)
< ∞. In these cases, the simulations study the TSLS, OLS and QML

estimators of the ARCH(1) model. When η = 4.1, E
(
Y 4t
)

=∞; in which case, only the TSLS and

QML estimators are studied. For the TSLS estimator, simulations consider h = 100, 50, 25, where

h is the longest lag included in the instrument vector. Sample sizes for the simulations are 100, 000,

1, 000, and 500, the first of which is considered to validate the large-sample properties of α̂IV and

α̂OLS , respectively. The (relatively) small sample sizes are only considered under the heavy-tailed

11Each of these values reflects the median estimate from Euro, Swiss Franc, and Japanese Yen returns (all measured
relative the USD) sampled at the daily, hourly, 5-min, and 1-min frequencies obtained using the QMLE.
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case of η = 4.1. These cases consider the finite-sample performance of the TSLS estimator relative

to the QMLE in instances (far) removed from normality that, nonetheless, remain empirically

grounded. All Monte Carlo experiments are conducted across 10, 000 simulation trials. Additional

details on the experiments are contained in the notes to Tables 3 and 4.

Table 3 summarizes the large sample results (T = 100, 000). The top panel depicts the relatively

thin-tailed case of η = 8.1. The bias in TSLS and OLS is small, although elevated relative to QML.

In addition, OLS is more biased than TSLS, with this difference in bias widening as skewness

in {εt} increases.12 In a comparison of effi ciency ratios (all measured against the QMLE), TSLS

and OLS are both notably less effi cient than QML.13 As skewness increases, the gap in effi ciency

between TSLS and QML shrinks, although it remains sizable in absolute terms. The effi ciency

gap between OLS and QML, in contrast, widens as skewness increases. Finally, at relatively low

levels of skewness, OLS appears more effi cient than TSLS. At moderate to high levels of skewness,

however, TSLS appears more effi cient than OLS, and by fairly wide margins. Lastly, there does

not appear to be much difference, either in terms of bias or in terms of dispersion, from using more

lagged instruments in TSLS.

The bottom panel of Table 3 summarizes results from the heavy-tailed case where η = 4.1. In

this case, OLS is not consistent, explaining its exclusion from consideration. TSLS is more biased

in this case than in the case where η = 8.1.14 Interestingly, though, the effi ciency gap between

TSLS and QML is smaller in this case than in the case where η = 8.1. As is true in the top panel

of Table 3, this effi ciency gap shrinks as skewness increases. In addition, there continues to be only

modest differences in terms of bias and dispersion between TSLS with instrument vectors based on

longer lag lengths.

Table 4 summarizes the small sample results (T = 1, 000 and T = 500). Relative to the bottom

panel of Table 3, the bias in TSLS is notably elevated, where this bias increases with the level

of skewness. Interestingly, QML now also displays notable bias, where this bias, too, increases

with the level of skewness. Most interestingly, the effi ciency gap between TSLS and QML is now

materially reduced. Moreover, in many instances, this gap is reversed, with TSLS evidencing sizable

12As skewness increases, the tail index decreases, thus causing the rate of convergence in α̂OLS to also slow. Note,
as well, that the convergence rate of α̂IV should be faster than α̂OLS .
13This finding, perhaps, is not too surprising given the relative rates of convergence of the three estimators and

the differences in distributions to which each estimator converges.
14This relative increase in bias is explained by the decrease in tail indices across the different levels of skewness

considered (see Table 1). With each of these tail indices near 3, the rate of convergence in α̂IV is anticipated to be
rather slow overall, and slower than in the case where η = 8.1.
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effi ciency gains over QML. Specifically, for the sample size of T = 1, 000, TSLS bests QML in terms

of effi ciency ratios at moderate and high skewness levels. For the smaller sample size of T = 500,

TSLS bests QML in terms of effi ciency ratios across all skewness levels. At the highest skewness

level when T = 500, TSLS sizably outperforms QML. Also noteworthy, there still does not appear

to be much cost in terms of sacrificed effi ciency from using "many" lagged instruments.15

Lastly, the simulation results presented in this section immediately apply to the estimator in

(28). That estimator depends on the third moment of returns conditional on those returns being

either greater than or equal to or less than zero. Empirically, skewness in positive and negative

equity returns is large, comparable in magnitude to the skewness levels included in the simulation

designs.16

4. Conclusion

This paper proposes closed-form, TSLS estimators for a class of univariate ARCH(p) models.

The instruments used in these estimators are not currently considered in the literature. The ad-

vantage of these instruments is that they allow the asymptotic theory for these estimators to follow

under moment-existence criteria that are consistent with the empirical findings for many financial

return series to which ARCH-type models are commonly applied. This characteristic renders the

proposed TSLS estimators empirically feasible, a characteristic that is not shared by competing,

closed-form estimators like OLS. Identification of these TSLS estimators links to asymmetry; either

in the model’s rescaled errors as in the ARCH(p) case, or in the specification of the conditional

variance function itself as in a threshold ARCH(1) case. The asymptotic theory for these estima-

tors extends results from Davis and Mikosch (1998) and Mikosch and Stărică (2000) to cross-order

covariances (defined as covariances between contemporaneous second-order returns and lagged first-

order returns), which become relevant for identification in instances of return asymmetry. These

TSLS estimators are also shown to outperform QML in finite samples, confirming the conjecture

of Bollerslev and Wooldridge (1992) that construction of an IV estimator for ARCH-type models

more effi cient than QMLE is possible.

15There does appear to be some increase in bias that results from using more instruments; however, this cost is
counter-balanced against reductions in dispersion.
16The GJR ARCH model, specifically, and threshold ARCH models, generally, are applied to equity returns to

account for the so called "leverage effect."
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As an extension of this paper’s results, consider

σ2t = ω0 + α0Y
2
t−1 + β0σ

2
t−1,

which is the popular GARCH(1, 1) model introduced by Bollerslev (1986). For this model, the

analog to (7) is

Xt = φ0Xt−1 − β0Wt−1 +Wt, φ0 = α0 + β0.

Following from results in Section 2.1, Zt−2 =
(
Yt−2, . . . , Yt−h

)′ is a valid set of instruments for Xt−1

when {Yt} is skewed and, thus, identifies φ0. From Prono (2014), skewness in {Yt} can be used to

separately identify α0 and β0 conditional on φ0. An interesting investigation, therefore, is whether

the closed-form TSLS estimators introduced in this paper can be extended to the empirically better

performing GARCH(p, q) class of models. This investigation is the subject of ongoing research.

Appendix (Proofs of the Theorems)

PROOF OF THEOREM 1. Note that

X̂t = Xt − (γ̂ − γ0) , (39)

and

X̂t = c+ α0X̂t−1 +Wt, (40)

where c = (α0 − 1) (γ̂ − γ0). Then given (40),

α̂IV = α0 +


c

(
n−1

∑
t
X̂t−1Zt−1

)′
Λ̂(

n−1
∑
t
X̂t−1Zt−1

)′
Λ̂

(
n−1

∑
t
X̂t−1Zt−1

)
×

(
n−1

∑
t

Zt−1

)
(41)

+


(
n−1

∑
t
X̂t−1Zt−1

)′
Λ̂(

n−1
∑
t
X̂t−1Zt−1

)′
Λ̂

(
n−1

∑
t
X̂t−1Zt−1

)
×

(
n−1

∑
t
WtZt−1

)

By Carrasco and Chen (2002, Corollary 6), {Yt} is strong mixing. As a consequence, given

(8) and A3, α̂IV a.s.→ α0, and ω̂
IV a.s.→ ω0 by the Ergodic Theorem. Next, given (39) and noting
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that the population analog to α̂IV in (11) is α0,

na−3n

(
α̂IV − α0

)
=

A0

(
a−3n

∑
t
XtZt−1 − E

(
XtZt−1

))
B0

+ oP (1)

d−→ B−10 A0Vh,

where Vh is jointly (κ0/3)−stable by Lemma 5 in the Supplemental Appendix and Samorod-

nitsky and Taqqu (1994, Theorem 2.1.5(c)), noting that

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
(42)

−γ0n
κ0−6
2κ0

(
n−1/2

∑
t

Zt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
+ oP (1)

by Ibragimov and Linnik (1971, Theorem 18.5.3). Next, since ω̂IV = γ̂
(

1− α̂IV
)
,

na−3n

(
ω̂IV − ω0

)
= −γ0na−3n

(
α̂IV − α0

)
+ na−3n (γ̂ − γ0) (43)

= −γ0na−3n
(
α̂IV − α0

)
+ oP (1) ,

where the second equality relies on

a−2n
∑
t
Y 2t

d−→ V 0,

for κ0 ∈ (3, 4] by Davis and Mikosch (1998), where V 0 is (κ0/2)-stable, and

n−1/2
∑
t
Y 2t

d−→ N
(
0, Σγ0

)
,

for κ0 ∈ (4, 6) by Ibragimov and Linnik, where Σγ0
is defined in Theorem 1. Finally, if
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κ0 ∈ (6, ∞), then from (41),

√
n
(
α̂IV − α0

)
= B−10 A0

(
n−1/2

∑
t
WtZt−1

)
+ oP (1)

d−→ N

0,
A0E

(
W 2
t Zt−1Z

′
t−1

)
A
′
0

B2
0

 ,

and

√
n
(
ω̂IV − ω0

)
=
√
n (γ̂ − γ0)− γ0

√
n
(
α̂IV − α0

)
d−→ N

(
0, Σω0

)
,

with Σω0
also defined in Theorem 1. Both of these standard convergence results rely on

Ibragimov and Linnik, with the first result also depending on the Slutsky Theorem.�

PROOF OF THEOREM 2. Given (39), also note that

X̂t−1 = Xt−1 −
(
Ĝ−G0

)
, G0 =

(
E
(
Y 2t × I{Yt≥0}

)
, E

(
Y 2t × I{Yt<0}

))′
and

Ẑt−1 = Zt−1 −
(
Ĥ−H0

)
,

H0 =
(
E
(
Yt × I{Yt≥0}

)
, E

(
Yt × I{Yt<0}

)
, E

(
Yt × I{Yt≥0}

)
, E

(
Yt × I{Yt<0}

)
, . . .

)′
so that, comparable to (40),

X̂t = c+ X̂
′
t−1α0 +Wt,

where c =
(
Ĝ−G0

)′
α0 − (γ̂ − γ0). Then

α̂IV −α0 = F̂

[
c

(
n−1

∑
t

Z
′
t−1

)
−
(
Ĥ−H0

)(
n−1

∑
t

Wt

)]
+ F̂

(
n−1

∑
t

WtZt−1

)
, (44)

from which α̂IV a.s.→ α0, where identification follows from A7 and (almost sure) convergence

in the sample moments follows from the Ergodic Theorem, since {Yt} remains strong mixing,
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this time by Carrasco and Chen (2002, Corollary 10). Next, from (28),

α̂IV −α0 = F̂

(
n−1

∑
t
XtZt−1 − E

(
XtZt−1

))
−F̂

[(
n−1

∑
t

Zt−1

)((
Ĥ−H0

)
+ (γ̂ − γ0)− (γ̂ − γ0)

(
Ĥ−H0

))]
−
(
F̂− F0

)
E
(
XtZt−1

)
such that

na−3n

(
α̂IV −α0

)
= F0

(
a−3n

∑
t
XtZt−1 − E

(
XtZt−1

))
+ oP (1) .

Let Zt−1 = Z
(1)
t−1 −H0. Given the arguments that support the second equalities in both (42)

and (43),

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Z

(1)
t−1 − E

(
Y 2t Z

(1)
t−1

)
−
(

H0a
−3
n

∑
t
Y 2t − E

(
Y 2t
)

+ γ0a
−3
n

∑
t

Zt−1

)
= a−3n

∑
t
Y 2t Z

(1)
t−1 − E

(
Y 2t Z

(1)
t−1

)
+ oP (1)

such that

na−3n

(
α̂IV −α0

)
d−→ F0W

(+,−)
h ,

where W
(+,−)
h is jointly (κ0/3)−stable by Lemma 6 in the Supplemental Appendix and

Samorodnitsky and Taqqu (1994, Theorem 2.1.5(c)). Finally, from (44),

√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
,

by Ibragimov and Linnik (1971, Theorem 18.5.3) and the Slutsky Theorem.�

PROOF OF THEOREM 3. Let ι be a p× 1 vector of ones. Given (34),

X̂t−1 = Xt−1 − (γ̂ − γ0) ι
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Then given (39),

α̂IV −α0 = F̂

(
c

(
n−1

∑
t

Zt−1

)
+ n−1

∑
t
WtZt−1

)
, (45)

where c = (ι′α0 − 1) (γ̂ − γ0). By Lemma 9 in the Supplemental Appendix, E
(
Zt−1X

′
t−1

)
has full column rank. By Carrasco and Chen (2002, Proposition 12), {Yt} remains strong

mixing. Then by the Ergodic Theorem, α̂IV a.s.−→ α0. Next, given (39),

α̂IV−α0 = F̂

(
n−1

∑
t
XtZt−1 − E

(
XtZt−1

))
−(γ̂ − γ0) F̂

(
n−1

∑
t

Zt−1

)
+
(
F̂− F0

)
E
(
XtZt−1

)
so that

na−3n

(
α̂IV −α0

)
= F0

(
a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

))
+ op (1) , (46)

since

a−3n
∑
t
XtZt−1 − E

(
XtZt−1

)
= a−3n

∑
t
Y 2t Zt−1 − E

(
Y 2t Zt−1

)
+ op (1) ,

following the same argument that supports (42). Then by Lemma 12 in the Supplemental

Appendix,

na−3n

(
α̂IV −α0

)
d−→ F0Vp,h,

where Vp,h is jointly (κ0/3)−stable by Samorodnitsky and Taqqu (1994, Theorem 2.1.5(c)).

Finally, from (45),

√
n
(
α̂IV −α0

)
d−→ N

(
0, F0E

(
W 2
t Zt−1Z

′
t−1

)
F
′
0

)
,

if κ0 ∈ (6, ∞) by Ibragimov and Linnik (1971, Theorem 18.5.3) and the Slutsky Theorem.
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TABLE 1

λ η skew. κ

-0.20 4.1 -1.27 3.50
-0.40 -2.32 3.32
-0.80 -3.48 3.14
-0.20 8.1 -0.53 4.97
-0.40 -0.98 4.62
-0.80 -1.52 4.30

Notes to Tables 1. The Monte Carlo simulations consider {εt} drawn from the skewed student’s t density

of Hansen (1994), where λ and η are the parameters governing this density, with the former determining skewness,

the latter determining the tails, and moments up to the ηth being well defined. Summarized for each (λ, η) pair

are the skewness and (tail) index, κ, for {Yt}, noting that ω0 = 0.005 and α0 = 0.25 in
{
σ2t
}
. For skewness,

Skew (Yt) ≡ E
((

Yt
σt

)3)
= E

(
ε3t
)

so that an analytical solution is available using results from Jondeau and Rockinger (2003). The (tail) index,

κ, is obtained as the mean value across 10, 000 simulation trials of the Hill (1975) estimator applied to 10, 000

observations of {Yt} using a constant threshold of 0.5%.

TABLE 2

JPY Returns SPX Returns DJIA Returns
freq. obs. skew. obs. skew. obs. skew.

1-min 174,997 -2.68 46,551 -1.75 46,557 -1.25
(0.01) (0.01) (0.01)

5-min 35,028 -1.94 9,312 -3.17 9,315 -2.68
(0.01) (0.03) (0.03)

10-min 17,523 -1.51
(0.02)

15-min 11,685 -3.10
(0.02)

20-min 8,766 -2.10
(0.03)

Notes to Tables 2. The data source is Bloomberg. The date range for all return series is 7/19/2015—

12/31/2015. Skew is an estimate of the (unconditionally) standardized third moment. While not equivalent to

the skewness measure applied in Table 1, simulation evidence (using the skewed student’s t density) suggests

these differences to be relatively minor enough not to disrupt comparisons between the general magnitudes of

skewness measures summarized here and in Table 1. Standard errors for the skewness estimates are in parentheses

and are measured against the null of normality.
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TABLE 3

mean med. dec. Effi ciency Ratio
λ est. m bias bias sd rge. rmse mae mdae rmse mae mdae

η = 8.1
-0.20 TSLS 100 -0.001 -0.004 0.038 0.085 0.038 0.028 0.022 5.29 4.89 4.58

50 -0.001 -0.004 0.039 0.085 0.039 0.028 0.022 5.33 4.93 4.68
25 -0.001 -0.004 0.039 0.086 0.039 0.028 0.022 5.38 4.97 4.68

OLS -0.005 -0.010 0.034 0.064 0.034 0.023 0.018 4.76 4.12 3.89
QMLE 0.000 0.000 0.007 0.018 0.007 0.006 0.005 1.00 1.00 1.00

-0.40 TSLS 100 -0.002 -0.005 0.028 0.059 0.028 0.020 0.016 3.54 3.14 2.95
50 -0.002 -0.005 0.028 0.059 0.028 0.020 0.016 3.54 3.14 2.95
25 -0.002 -0.005 0.028 0.059 0.029 0.020 0.016 3.54 3.14 2.93

OLS -0.008 -0.015 0.040 0.077 0.041 0.029 0.023 5.08 4.55 4.40
QMLE 0.000 0.000 0.008 0.020 0.008 0.006 0.005 1.00 1.00 1.00

-0.80 TSLS 100 -0.003 -0.008 0.028 0.056 0.028 0.020 0.016 2.90 2.54 2.42
50 -0.003 -0.008 0.028 0.055 0.028 0.020 0.016 2.89 2.53 2.43
25 -0.003 -0.008 0.028 0.056 0.028 0.020 0.016 2.88 2.52 2.41

OLS -0.015 -0.023 0.046 0.091 0.049 0.037 0.031 5.02 4.72 4.73
QMLE 0.000 0.000 0.010 0.025 0.010 0.008 0.007 1.00 1.00 1.00

η = 4.1
-0.20 TSLS 100 -0.017 -0.027 0.081 0.179 0.083 0.062 0.050 4.63 4.90 4.96

50 -0.017 -0.027 0.082 0.181 0.083 0.063 0.049 4.66 4.92 4.87
25 -0.017 -0.027 0.082 0.178 0.084 0.063 0.050 4.68 4.92 4.93

QMLE 0.000 -0.002 0.018 0.039 0.018 0.013 0.010 1.00 1.00 1.00
-0.40 TSLS 100 -0.021 -0.031 0.061 0.125 0.065 0.049 0.042 2.89 3.20 3.45

50 -0.021 -0.031 0.061 0.124 0.065 0.049 0.042 2.88 3.19 3.43
25 -0.021 -0.031 0.061 0.124 0.065 0.049 0.041 2.87 3.18 3.42

QMLE 0.000 -0.002 0.023 0.047 0.023 0.015 0.012 1.00 1.00 1.00
-0.80 TSLS 100 -0.030 -0.040 0.055 0.113 0.063 0.051 0.047 2.12 2.52 2.93

50 -0.030 -0.040 0.055 0.112 0.062 0.050 0.046 2.11 2.50 2.90
25 -0.030 -0.039 0.055 0.111 0.062 0.050 0.046 2.11 2.50 2.89

QMLE 0.000 -0.003 0.029 0.061 0.029 0.020 0.016 1.00 1.00 1.00

Notes to Tables 3. The ARCH(1) model is considered with ω0 = 0.005 and α0 = 0.25. Simulations are

conducted on samples of T = 100, 000 observations across 10, 000 trials. Within each simulation trial, the first

200 observations are dropped to avoid initialization effects. In the case where η = 8.1, the estimators under

study are TSLS, OLS, and QMLE. When η = 4.1, only the TSLS and QMLE estimators are considered, owing

to the insuffi cient existence of higher moments needed to render OLS consistent. For TSLS, instrument vectors

of 100, 50, and 25 lags are considered. Summary statistics are the mean bias and median bias, each measured

relative to the true parameter value, the standard deviation, decile range (the difference between the 90th and

10th percentiles), and the root mean squared error, mean absolute error, and median absolute error, also each

measured relative to the true parameter value. The Effi ciency Ratio is the root mean squared error, mean

absolute error, and median absolute error of the given estimator divided by the corresponding measure for the

QMLE. {εt} is drawn from the student’s t density of Hansen (1994) for the listed (λ, η) pairs. Skewness and

(tail) index estimates for {Yt} that correspond with each (λ, η) pair are summarized in Table 1.
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TABLE 4

mean med. dec. Effi ciency Ratio
λ est. m bias bias sd rge. rmse mae mdae rmse mae mdae

T = 1, 000
-0.20 TSLS 100 -0.057 -0.076 0.122 0.310 0.135 0.113 0.107 1.12 1.25 1.45

50 -0.046 -0.063 0.130 0.335 0.138 0.115 0.107 1.15 1.27 1.45
25 -0.034 -0.054 0.140 0.363 0.144 0.119 0.110 1.20 1.32 1.49

QMLE -0.004 -0.024 0.120 0.279 0.120 0.091 0.074 1.00 1.00 1.00
-0.40 TSLS 100 -0.064 -0.083 0.114 0.288 0.130 0.110 0.104 0.95 1.08 1.26

50 -0.059 -0.077 0.116 0.293 0.131 0.110 0.103 0.95 1.07 1.24
25 -0.056 -0.075 0.119 0.299 0.132 0.110 0.103 0.96 1.08 1.24

QMLE -0.004 -0.031 0.137 0.315 0.137 0.103 0.083 1.00 1.00 1.00
-0.80 TSLS 100 -0.078 -0.095 0.100 0.246 0.127 0.109 0.106 0.78 0.89 1.04

50 -0.076 -0.093 0.101 0.250 0.127 0.108 0.106 0.78 0.88 1.03
25 -0.075 -0.091 0.102 0.251 0.126 0.108 0.104 0.78 0.88 1.01

QMLE -0.005 -0.045 0.162 0.375 0.162 0.123 0.103 1.00 1.00 1.00
T = 500

-0.20 TSLS 100 -0.065 -0.085 0.122 0.310 0.138 0.118 0.112 0.93 1.03 1.18
50 -0.049 -0.070 0.133 0.342 0.142 0.119 0.112 0.95 1.04 1.17
25 -0.035 -0.059 0.146 0.383 0.150 0.126 0.119 1.01 1.10 1.24

QMLE -0.007 -0.035 0.149 0.352 0.149 0.114 0.096 1.00 1.00 1.00
-0.40 TSLS 100 -0.072 -0.093 0.119 0.299 0.139 0.119 0.115 0.84 0.94 1.07

50 -0.062 -0.083 0.124 0.316 0.139 0.118 0.112 0.84 0.93 1.04
25 -0.055 -0.078 0.130 0.331 0.141 0.119 0.113 0.86 0.94 1.05

QMLE -0.007 -0.044 0.164 0.389 0.164 0.127 0.108 1.00 1.00 1.00
-0.80 TSLS 100 -0.087 -0.107 0.106 0.267 0.138 0.120 0.118 0.72 0.80 0.90

50 -0.083 -0.101 0.109 0.275 0.137 0.118 0.115 0.71 0.79 0.88
25 -0.080 -0.100 0.111 0.282 0.137 0.118 0.116 0.72 0.79 0.88

QMLE -0.010 -0.064 0.192 0.453 0.192 0.150 0.132 1.00 1.00 1.00

Notes to Tables 4. The ARCH(1) model is considered with ω0 = 0.005 and α0 = 0.25. Simulations are

conducted on samples of either T = 1, 000 or T = 500 observations across 10, 000 trials. Within each simulation

trial, the first 200 observations are dropped to avoid initialization effects. In both panels, η = 4.1, so only

the TSLS and QMLE estimators are considered, owing to the insuffi cient existence of higher moments needed

to render OLS consistent. For TSLS, instrument vectors of 100, 50, and 25 lags are considered. Summary

statistics are the mean bias and median bias, each measured relative to the true parameter value, the standard

deviation, decile range (the difference between the 90th and 10th percentiles), and the root mean squared error,

mean absolute error, and median absolute error, also each measured relative to the true parameter value. The

Effi ciency Ratio is the root mean squared error, mean absolute error, and median absolute error of the given

estimator divided by the corresponding measure for the QMLE. {εt} is drawn from the student’s t density of

Hansen (1994) for the listed (λ, η) pairs. Skewness and (tail) index estimates for {Yt} that correspond with each

(λ, η) pair are summarized in Table 1.
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FIGURE 1
Hill Plots for Select FX (Absolute) 20-Min Log-Returns

Date Range: Jan 1, 2015--May 31, 2015
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Notes to Figure 1:
This Figure depicts Hill (1975) tail index estimates for Japanese Yen, 
Euro, and Swiss Franc exchange rates (all measured against the US 
Dollar) at decreasing thresholds. The salient features of this figure are 
summarized in Section 1.2 of the paper.  All data sources to Bloomberg.
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